10 Most VSAQ’s of Hyperbolic Functions Chapter in Inter 1st Year Maths-1A (TS/AP)

2 Marks

VSAQ-1 : If sinhx = 3 then show that x = loge (3+√10).

Step 1: Definition of sinh x

The hyperbolic sine function, denoted as sinh x, is defined as:

$$\sinh x = \frac{e^x – e^{-x}}{2}$$

Given that sinhx=3, we can write:

$$\frac{e^x – e^{-x}}{2} = 3$$

Step 2: Definition of sinh−1x

The inverse hyperbolic sine function, denoted as sinh−1x or arsinhx, can be defined in terms of natural logarithms as follows:

$$\sinh^{-1} x = \log_e(x + \sqrt{x^2 + 1})$$

Step 3: Calculate x using sinhx=3

Given sinhx=3, we want to find x. According to the definition of sinh−1x, we can express x as:

$$x = \sinh^{-1}(3)$$

Using the formula for sinh−1x, we substitute 33 for x:

$$x = \log_e(3 + \sqrt{3^2 + 1})$$

Simplify the expression under the square root:

$$x = \log_e(3 + \sqrt{9 + 1})$$

$$x = \log_e(3 + \sqrt{10})$$


VSAQ-2 : If sinhx = 5 then show that x = log(5+√26).

Step 1: Definition of sinhx

The hyperbolic sine function, denoted as sinhx, is defined as:

$$\sinh x = \frac{e^x – e^{-x}}{2}$$

Step 2: Definition of sinh−1x

The inverse hyperbolic sine function, denoted as sinh−1x or arsinhx, can be expressed with the natural logarithm function (loge​ or ln) as follows:

$$\sinh^{-1} x = \log_e(x + \sqrt{x^2 + 1})$$

Step 3: Calculate x using sinhx=5

Given sinhx=5, to find x, we write:

$$x = \sinh^{-1}(5)$$

Using the formula for sinh−1x, we substitute 55 for x:

$$x = \log_e(5 + \sqrt{5^2 + 1})$$

Simplify the expression under the square root:

$$x = \log_e(5 + \sqrt{25 + 1})$$

$$x = \log_e(5 + \sqrt{26})$$


VSAQ-3 : Show that Tanh-11/2 = 1/2 loge3.

Step 1: Definition of tanh−1x

The inverse hyperbolic tangent function, denoted as tanh−1x, is defined as:

$$\tanh^{-1} x = \frac{1}{2}\log_e\left(\frac{1 + x}{1 – x}\right)$$

Step 2: Calculate

$$\tanh^{-1}\left(\frac{1}{2}\right)$$

$$\tanh^{-1}\left(\frac{1}{2}\right) = \frac{1}{2}\log_e\left(\frac{1 + \frac{1}{2}}{1 – \frac{1}{2}}\right)$$

Step 3: Simplify the expression

Simplify the fraction inside the logarithm:

$$\tanh^{-1}\left(\frac{1}{2}\right) = \frac{1}{2}\log_e\left(\frac{1 + \frac{1}{2}}{1 – \frac{1}{2}}\right) = \frac{1}{2}\log_e\left(\frac{\frac{3}{2}}{\frac{1}{2}}\right)$$

Simplify the complex fraction:

$$\tanh^{-1}\left(\frac{1}{2}\right) = \frac{1}{2}\log_e\left(3\right)$$


VSAQ-4 : Show that Tanh-11/4 = 1/2 loge5/3.

Step 1: Definition of tanh−1x

The inverse hyperbolic tangent function, denoted as tanh−1x, is given by the formula:

$$\tanh^{-1} x = \frac{1}{2}\log_e\left(\frac{1 + x}{1 – x}\right)$$

Step 2: Apply the formula to 1/4​

$$\tanh^{-1}\left(\frac{1}{4}\right) = \frac{1}{2}\log_e\left(\frac{1 + \frac{1}{4}}{1 – \frac{1}{4}}\right)$$

Step 3: Simplify the expression

$$\tanh^{-1}\left(\frac{1}{4}\right) = \frac{1}{2}\log_e\left(\frac{\frac{5}{4}}{\frac{3}{4}}\right)$$

$$\tanh^{-1}\left(\frac{1}{4}\right) = \frac{1}{2}\log_e\left(\frac{5}{3}\right)$$


VSAQ-5 : If sinhx = ¾ find cosh2x and sinh2x.

Step 1: Calculate cosh(x)

Given that $$\cosh(x) = \sqrt{\sinh^2(x) + 1}$$

we first compute sinh2(x): $$\sinh^2(x) = \left(\frac{3}{4}\right)^2 = \frac{9}{16}$$

Next, add 1 to sinh2(x) and take the square root:

$$\cosh(x) = \sqrt{\frac{9}{16} + 1} = \sqrt{\frac{9}{16} + \frac{16}{16}} = \sqrt{\frac{25}{16}} = \frac{5}{4}$$

Step 2: Calculate cosh(2x)

Using the formula $$\cosh(2x) = \cosh^2(x) + \sinh^2(x)$$

$$\cosh^2(x) = \left(\frac{5}{4}\right)^2 = \frac{25}{16}$$

$$\sinh^2(x) = \frac{9}{16}$$

Adding these results gives us:

$$\cosh(2x) = \frac{25}{16} + \frac{9}{16} = \frac{34}{16} = \frac{17}{8}$$

Step 3: Calculate sinh(2x)

The formula for sinh(2x) is 2sinh(x)cosh(x):

$$\sinh(2x) = 2 \times \frac{3}{4} \times \frac{5}{4} = \frac{15}{8}$$


VSAQ-6 : If coshx = 5/2, find cosh(2x), sinh(2x).

Step 1: Calculate sinh(x)

From the identity $$\cosh^2(x) – \sinh^2(x) = 1$$

we can solve for sinh(x): $$\sinh^2(x) = \cosh^2(x) – 1$$

Given $$\cosh(x) = \frac{5}{2}$$

$$\sinh^2(x) = \left(\frac{5}{2}\right)^2 – 1 = \frac{25}{4} – 1 = \frac{25}{4} – \frac{4}{4} = \frac{21}{4}$$

Taking the square root (and considering the positive root because cosh(x) is positive):

$$\sinh(x) = \sqrt{\frac{21}{4}} = \frac{\sqrt{21}}{2}$$

Step 2: Calculate cosh(2x)

Using the double angle identity $$\cosh(2x) = 2\cosh^2(x) – 1$$

$$\cosh(2x) = 2\left(\frac{5}{2}\right)^2 – 1 = 2 \times \frac{25}{4} – 1 = \frac{50}{4} – 1 = \frac{50}{4} – \frac{4}{4} = \frac{46}{4} = \frac{23}{2}$$

Step 3: Calculate sinh(2x)

Using the identity $$\sinh(2x) = 2\sinh(x)\cosh(x)$$

$$\sinh(2x) = 2 \times \frac{\sqrt{21}}{2} \times \frac{5}{2} = \sqrt{21} \times \frac{5}{2} = \frac{5\sqrt{21}}{2}$$


VSAQ-7 : Prove that (coshx+sinhx)n=cosh⁡(nx)+sinh⁡(nx).

L.H.S $$= (\cosh(x) + \sinh(x))^n$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \sinh(x) = \frac{e^x – e^{-x}}{2}$$

$$= \left( \frac{e^x + e^{-x}}{2} + \frac{e^x – e^{-x}}{2} \right)^n$$

Simplify the expression: $$= \left( \frac{2e^x}{2} \right)^n = (e^x)^n$$

Simplify further: $$= e^{nx} \quad \dots \text{(1)}$$

R.H.S $$= \cosh(nx) + \sinh(nx)$$

Again, using the definitions of hyperbolic cosine and hyperbolic sine, but this time with nx instead of x:

$$\cosh(nx) = \frac{e^{nx} + e^{-nx}}{2}, \quad \sinh(nx) = \frac{e^{nx} – e^{-nx}}{2}$$

Substitute these definitions into the R.H.S: $$= \frac{e^{nx} + e^{-nx}}{2} + \frac{e^{nx} – e^{-nx}}{2}$$

Simplify the expression: $$= \frac{2e^{nx}}{2}$$

Simplify further: $$= e^{nx} \quad \dots \text{(2)}$$

$$L.H.S = R.H.S$$


VSAQ-8 : Prove that (coshx-sinhx)n=cosh⁡(nx)-sinh⁡(nx).

Given:

$$LHS = (\cosh(x) – \sinh(x))^n$$

Start with the definition of cosh(x) and sinh(x):

$$\cosh(x) = \frac{e^x + e^{-x}}{2},$$

$$\sinh(x) = \frac{e^x – e^{-x}}{2}$$

Substitute these definitions into the LHS:

$$LHS = \left(\frac{e^x + e^{-x}}{2} – \frac{e^x – e^{-x}}{2}\right)^n.$$

Simplify the expression within the parenthesis:

$$LHS = \left(\frac{2e^{-x}}{2}\right)^n = (e^{-x})^n.$$

Further simplification gives:

$$LHS = e^{-nx}.$$

For the RHS:

Start with the definitions of cosh(nx) and sinh(nx):

$$\cosh(nx) = \frac{e^{nx} + e^{-nx}}{2},$$

$$\sinh(nx) = \frac{e^{nx} – e^{-nx}}{2}.$$

Substitute these definitions into the RHS:

$$RHS = \left(\frac{e^{nx} + e^{-nx}}{2}\right) – \left(\frac{e^{nx} – e^{-nx}}{2}\right).$$

Simplify the expression:

$$RHS = \frac{2e^{-nx}}{2} = e^{-nx}.$$

$$LHS = RHS$$


VSAQ-9 : Prove that cosh2x-sinh2x=1.

L.H.S: $$\cosh(2x) – \sinh(2x)$$

First, let’s recall the definitions of hyperbolic cosine and hyperbolic sine functions:

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\sinh(x) = \frac{e^x – e^{-x}}{2}$$

Substituting 2x in place of x, we have:

$$\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}$$

$$\sinh(2x) = \frac{e^{2x} – e^{-2x}}{2}$$

The expression becomes:

$$\cosh(2x) – \sinh(2x) = \left(\frac{e^{2x} + e^{-2x}}{2}\right) – \left(\frac{e^{2x} – e^{-2x}}{2}\right)$$

Simplifying:

$$= \frac{(e^{2x} + e^{-2x}) – (e^{2x} – e^{-2x})}{2}$$

$$= \frac{2e^{2x} – 2e^{2x}}{2} + \frac{2e^{-2x}}{2}$$

$$= \frac{2e^{-2x}}{2}$$

$$= e^{-2x} + e^{2x} – e^{2x}$$

$$= e^{-2x}$$

$$(a + b)^2 – (a – b)^2 = 4ab$$


VSAQ-10 : Prove that cosh2x = 2cosh2x-1.

Given:

$$\text{R.H.S} = 2 \cosh 2x – 1$$

First, we use the definition of the hyperbolic cosine function:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Therefore,

$$\cosh 2x = \frac{e^{2x} + e^{-2x}}{2}$$

Substitute this into the given R.H.S:

$$\text{R.H.S} = 2\left( \frac{e^{2x} + e^{-2x}}{2} \right) – 1$$

Simplify the expression:

$$\text{R.H.S} = e^{2x} + e^{-2x} – 1$$

(OR)

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$\cosh 2x = 2\cosh^2 x – 1$$