Respiration in Plants (LAQs)

Botany-2 | 5. Respiration In Plants – LAQs:
Welcome to “LAQs” in “Chapter 5: Respiration In Plants”. This page includes detailed explanations for each LAQ, provided in simple English, followed by a Telugu explanation, and presented in the exam format. This approach helps you tackle each question effectively and aim for great results in your final exams.


LAQ-1 : Give an account of glycolysis. Where does it occur? What are the end products? Trace the fate of these products in both acrobic and anaerobic respiration. (OR) Describe the process of various biochemical reactions that occur during Glycolysis.

For Backbenchers 😎

Glycolysis is a fundamental process that happens in all living organisms to extract energy from glucose, which is a type of sugar. This energy extraction is crucial for the cell’s metabolism. It takes place in a part of the cell called the cytoplasm and involves a series of ten important steps. During glycolysis, glucose is transformed into pyruvic acid, ATP (a molecule that stores energy), and NADH (a molecule involved in energy transfer).

In the first step, glucose combines with ATP to create Glucose-6-phosphate. Then, it goes through several transformations, such as becoming Fructose-6-phosphate and then Fructose1,6-biphosphate, with the help of ATP molecules. These changes prepare glucose for further breakdown.

The process continues with the splitting of Fructose1,6-biphosphate into two molecules: Glyceraldehyde-3-phosphate and DHAP. DHAP is then converted back into Glyceraldehyde-3-phosphate. At this point, Glyceraldehyde-3-phosphate undergoes oxidation, producing 1,3-biphosphoglycerate and NADH.

The next steps involve the transfer of phosphate groups and changes in the chemical structure of molecules. Eventually, Pyruvic acid is formed, and this molecule can take one of two paths depending on whether oxygen is available. If there is oxygen, Pyruvic acid goes through more chemical reactions and is fully broken down into carbon dioxide (CO2) and water (H2O), releasing a lot of energy. On the other hand, if there is no oxygen, Pyruvic acid can be converted into either ethyl alcohol or lactic acid through a process called fermentation.

In essence, glycolysis is like the initial step in extracting energy from glucose, and what happens to Pyruvic acid afterward depends on the presence or absence of oxygen. This process is crucial for providing cells with the necessary energy for their functioning.

మన తెలుగులో

గ్లైకోలిసిస్ అనేది ఒక రకమైన చక్కెర అయిన గ్లూకోజ్ నుండి శక్తిని సేకరించేందుకు అన్ని జీవులలో జరిగే ప్రాథమిక ప్రక్రియ. ఈ శక్తి సంగ్రహణ సెల్ యొక్క జీవక్రియకు కీలకమైనది. ఇది సైటోప్లాజమ్ అని పిలువబడే సెల్ యొక్క ఒక భాగంలో జరుగుతుంది మరియు పది ముఖ్యమైన దశల శ్రేణిని కలిగి ఉంటుంది. గ్లైకోలిసిస్ సమయంలో, గ్లూకోజ్ పైరువిక్ యాసిడ్, ATP (శక్తిని నిల్వ చేసే అణువు) మరియు NADH (శక్తి బదిలీలో పాల్గొన్న అణువు) గా రూపాంతరం చెందుతుంది.

మొదటి దశలో, గ్లూకోజ్ ATPతో కలిసి గ్లూకోజ్-6-ఫాస్ఫేట్‌ను సృష్టిస్తుంది. అప్పుడు, ఇది ATP అణువుల సహాయంతో ఫ్రక్టోజ్-6-ఫాస్ఫేట్ మరియు తరువాత ఫ్రక్టోజ్1,6-బైఫాస్ఫేట్ వంటి అనేక పరివర్తనల ద్వారా వెళుతుంది. ఈ మార్పులు గ్లూకోజ్‌ను మరింత విచ్ఛిన్నం చేయడానికి సిద్ధం చేస్తాయి.

ఫ్రక్టోజ్1,6-బైఫాస్ఫేట్‌ను రెండు అణువులుగా విభజించడంతో ప్రక్రియ కొనసాగుతుంది: గ్లిసెరాల్డిహైడ్-3-ఫాస్ఫేట్ మరియు DHAP. DHAP తిరిగి గ్లిసెరాల్డిహైడ్-3-ఫాస్ఫేట్‌గా మార్చబడుతుంది. ఈ సమయంలో, గ్లిసెరాల్డిహైడ్-3-ఫాస్ఫేట్ ఆక్సీకరణకు లోనవుతుంది, 1,3-బిఫాస్ఫోగ్లిసెరేట్ మరియు NADH ను ఉత్పత్తి చేస్తుంది.

తదుపరి దశలలో ఫాస్ఫేట్ సమూహాల బదిలీ మరియు అణువుల రసాయన నిర్మాణంలో మార్పులు ఉంటాయి. చివరికి, పైరువిక్ ఆమ్లం ఏర్పడుతుంది మరియు ఈ అణువు ఆక్సిజన్ అందుబాటులో ఉందో లేదో అనేదానిపై ఆధారపడి రెండు మార్గాలలో ఒకదానిని తీసుకోవచ్చు. ఆక్సిజన్ ఉన్నట్లయితే, పైరువిక్ యాసిడ్ మరింత రసాయన ప్రతిచర్యల ద్వారా వెళుతుంది మరియు పూర్తిగా కార్బన్ డయాక్సైడ్ (CO2) మరియు నీరు (H2O)గా విభజించబడి, చాలా శక్తిని విడుదల చేస్తుంది. మరోవైపు, ఆక్సిజన్ లేకపోతే, పైరువిక్ ఆమ్లం కిణ్వ ప్రక్రియ అనే ప్రక్రియ ద్వారా ఇథైల్ ఆల్కహాల్ లేదా లాక్టిక్ యాసిడ్‌గా మార్చబడుతుంది.

సారాంశంలో, గ్లైకోలిసిస్ అనేది గ్లూకోజ్ నుండి శక్తిని వెలికితీసే ప్రారంభ దశ వంటిది మరియు పైరువిక్ యాసిడ్ తర్వాత ఏమి జరుగుతుంది అనేది ఆక్సిజన్ ఉనికి లేదా లేకపోవడంపై ఆధారపడి ఉంటుంది. కణాల పనితీరుకు అవసరమైన శక్తిని అందించడానికి ఈ ప్రక్రియ కీలకం.

Introduction

Glycolysis is a crucial process that occurs in every living organism. It represents the first step in the breakdown of glucose to release energy, which cells need to function. This process happens in the cytoplasm of cells, where glucose is converted into simpler molecules, yielding energy in the form of ATP (adenosine triphosphate) and NADH (nicotinamide adenine dinucleotide plus hydrogen). The main product of glycolysis is pyruvic acid.

The Glycolysis Process

Glycolysis involves a sequence of ten biochemical reactions, each of which is catalyzed by a specific enzyme. Let’s walk through these reactions to understand how glucose is transformed and how energy is produced.

  1. Phosphorylation of Glucose: The process begins when glucose is phosphorylated by the enzyme hexokinase. In this step, glucose combines with ATP to form glucose-6-phosphate and ADP (adenosine diphosphate). This reaction is important because it traps glucose inside the cell, making it available for further breakdown.
  2. Isomerization of Glucose-6-Phosphate: The glucose-6-phosphate is then rearranged by the enzyme hexose phosphate isomerase to form fructose-6-phosphate. This rearrangement changes the structure of the molecule, preparing it for further reactions.
  3. Second Phosphorylation: The enzyme phosphofructokinase catalyzes the addition of another phosphate group to fructose-6-phosphate, using a second ATP molecule. This step produces fructose-1,6-bisphosphate. This is a crucial regulatory step in glycolysis, determining the pathway’s continuation.
  4. Cleavage of Fructose-1,6-Bisphosphate: The fructose-1,6-bisphosphate is then split into two three-carbon molecules: glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) by the enzyme aldolase. Both of these molecules can be further processed in the glycolysis pathway.
  5. Conversion of DHAP to G3P: The enzyme triose phosphate isomerase quickly converts DHAP into G3P, so that both molecules entering the next steps of glycolysis are the same, simplifying the pathway.
  6. Oxidation and Phosphate Addition: Each G3P molecule undergoes oxidation, where it loses electrons, resulting in the formation of 1,3-bisphosphoglycerate. This reaction also generates NADH from NAD+, a coenzyme that plays a key role in cellular respiration.
  7. First ATP Generation: The next step involves the transfer of a phosphate group from 1,3-bisphosphoglycerate to ADP, producing ATP and 3-phosphoglycerate. This reaction is catalyzed by the enzyme phosphoglycerate kinase and is the first step in glycolysis that directly generates ATP, the energy currency of the cell.
  8. Intramolecular Rearrangement: The 3-phosphoglycerate is then rearranged by the enzyme phosphoglyceromutase to form 2-phosphoglycerate.
  9. Dehydration: The enzyme enolase catalyzes the removal of a water molecule from 2-phosphoglycerate, resulting in the formation of phosphoenolpyruvate (PEP).
  10. Second ATP Generation: In the final step, the enzyme pyruvate kinase transfers a phosphate group from PEP to ADP, producing another molecule of ATP and the final product of glycolysis, pyruvic acid.

Fate of Pyruvic Acid

The fate of the pyruvic acid produced in glycolysis depends on whether oxygen is available.

  1. Aerobic Respiration: When oxygen is present, pyruvic acid enters the mitochondria and is fully oxidized into carbon dioxide (CO2) and water (H2O) through the Krebs cycle and electron transport chain. This process generates a large amount of ATP, providing energy for the cell’s activities.
  2. Anaerobic Respiration: In the absence of oxygen, pyruvic acid undergoes fermentation. Depending on the type of organism or cell, this can result in the production of lactic acid (as seen in muscle cells during intense exercise) or ethyl alcohol (as seen in yeast). This process produces far less energy compared to aerobic respiration but allows cells to continue generating ATP under low-oxygen conditions.

Summary

In summary, glycolysis is a vital metabolic pathway that breaks down glucose into pyruvic acid, yielding ATP and NADH in the process. This occurs in the cytoplasm of cells and involves a series of ten enzyme-driven reactions. The fate of pyruvic acid varies depending on oxygen availability: it is either fully oxidized into CO2 and H2O in the presence of oxygen or converted into lactic acid or ethyl alcohol under anaerobic conditions. This entire process is essential for cells to derive energy and sustain life.


LAQ-2 : Explain the reactions of Krebs cycle.

For Backbenchers 😎

The Krebs Cycle is like a little power plant inside our cells that helps us make energy. It’s a bit like a factory with many steps, and each step changes one thing into another to create energy.

First, two molecules, Acetyl CoA and Oxaloacetic acid, mix together with water to make Citric acid and Coenzyme A. Then, Citric acid changes into Cis-aconitic acid and water. After that, Cis-aconitic acid becomes Isocitric acid.

In the next step, Isocitric acid teams up with another molecule called NAD+ to make Oxalosuccinic acid, NADH, and a tiny part called a hydrogen ion. This step uses an enzyme called Isocitrate Dehydrogenase. Then, Oxalosuccinic acid turns into α-Ketoglutaric acid and releases carbon dioxide thanks to α-Ketoglutarate Dehydrogenase.

In the sixth step, α-Ketoglutaric acid mixes with NAD+ and CoA to create Succinyl CoA, NADH, a hydrogen ion, and carbon dioxide. Then, in the seventh step, Succinyl CoA changes into Succinic acid, ATP (a type of energy molecule), and CoA. This step is possible because of Succinyl-CoA Synthetase.

In the eighth step, Succinic acid reacts with something called FAD to make Fumaric acid and FADH2. In the ninth step, Fumaric acid becomes Malic acid. Finally, in the tenth step, Malic acid turns into Oxaloacetic acid, NADH, and a hydrogen ion.

At the end of the Krebs Cycle, we get back the starting molecule, Oxaloacetic acid, and we can start the cycle again. Each turn of the cycle gives us special molecules called NADH and FADH2, which are like helpers that help us make even more energy (ATP). Plus, we get rid of carbon dioxide as waste. So, the Krebs Cycle is like a little energy-making factory in our cells!”

మన తెలుగులో

క్రెబ్స్ సైకిల్ అనేది మన కణాల లోపల ఒక చిన్న పవర్ ప్లాంట్ లాంటిది, ఇది మనకు శక్తిని తయారు చేయడంలో సహాయపడుతుంది. ఇది చాలా దశలతో కూడిన ఫ్యాక్టరీ లాగా ఉంటుంది మరియు శక్తిని సృష్టించడానికి ఒక్కో అడుగు ఒక్కో వస్తువుగా మారుతుంది.

మొదట, రెండు అణువులు, ఎసిటైల్ CoA మరియు ఆక్సలోఅసిటిక్ యాసిడ్, సిట్రిక్ యాసిడ్ మరియు కోఎంజైమ్ Aను తయారు చేయడానికి నీటితో కలిపి, సిట్రిక్ యాసిడ్ సిస్-అకోనిటిక్ యాసిడ్ మరియు నీరుగా మారుతుంది. ఆ తరువాత, సిస్-అకోనిటిక్ యాసిడ్ ఐసోసిట్రిక్ యాసిడ్ అవుతుంది.

తదుపరి దశలో, ఐసోసిట్రిక్ యాసిడ్ NAD+ అనే మరొక అణువుతో కలిసి ఆక్సాలోసుసినిక్ యాసిడ్, NADH మరియు హైడ్రోజన్ అయాన్ అని పిలువబడే ఒక చిన్న భాగాన్ని తయారు చేస్తుంది. ఈ దశ ఐసోసిట్రేట్ డీహైడ్రోజినేస్ అనే ఎంజైమ్‌ను ఉపయోగిస్తుంది. అప్పుడు, ఆక్సాలోసుసినిక్ యాసిడ్ α-కెటోగ్లుటారిక్ యాసిడ్‌గా మారుతుంది మరియు α-కెటోగ్లుటరేట్ డీహైడ్రోజినేస్ కారణంగా కార్బన్ డయాక్సైడ్‌ను విడుదల చేస్తుంది.

ఆరవ దశలో, α-కెటోగ్లుటారిక్ యాసిడ్ NAD+ మరియు CoAతో కలిపి సుక్సినైల్ CoA, NADH, హైడ్రోజన్ అయాన్ మరియు కార్బన్ డయాక్సైడ్‌ను సృష్టించడానికి. తర్వాత, ఏడవ దశలో, సక్సినిల్ CoA సుక్సినిక్ యాసిడ్, ATP (ఒక రకమైన శక్తి అణువు) మరియు CoAగా మారుతుంది. Succinyl-CoA Synthetase కారణంగా ఈ దశ సాధ్యమైంది.

ఎనిమిదవ దశలో, సుక్సినిక్ ఆమ్లం FAD అని పిలువబడే దానితో చర్య జరిపి ఫ్యూమరిక్ ఆమ్లం మరియు FADH2ను తయారు చేస్తుంది. తొమ్మిదవ దశలో, ఫ్యూమారిక్ ఆమ్లం మాలిక్ ఆమ్లంగా మారుతుంది. చివరగా, పదవ దశలో, మాలిక్ ఆమ్లం ఆక్సలోఅసిటిక్ ఆమ్లం, NADH మరియు హైడ్రోజన్ అయాన్‌గా మారుతుంది.

క్రెబ్స్ సైకిల్ ముగింపులో, మేము ప్రారంభ అణువు అయిన ఆక్సలోఅసిటిక్ యాసిడ్‌ను తిరిగి పొందుతాము మరియు మనం చక్రాన్ని మళ్లీ ప్రారంభించవచ్చు. చక్రం యొక్క ప్రతి మలుపు మనకు NADH మరియు FADH2 అని పిలువబడే ప్రత్యేక అణువులను అందిస్తుంది, ఇవి మనకు మరింత శక్తిని (ATP) తయారు చేయడంలో సహాయపడే సహాయకుల వలె ఉంటాయి. అదనంగా, మేము కార్బన్ డయాక్సైడ్ను వ్యర్థంగా వదిలించుకుంటాము. కాబట్టి, క్రెబ్స్ సైకిల్ మన కణాలలో శక్తిని తయారుచేసే చిన్న కర్మాగారం లాంటిది!”

Introduction

The Krebs Cycle, also known as the citric acid cycle or the tricarboxylic acid cycle (TCA), is a critical sequence of chemical reactions that occurs in all aerobic organisms. This cycle is essential for generating energy by oxidizing a molecule called Acetyl-CoA. The energy produced is captured in the form of ATP (Adenosine Triphosphate), the energy currency of the cell, and carbon dioxide is released as a byproduct. The Krebs cycle takes place in the mitochondrial matrix, a specialized compartment within the cell.

Understanding the Krebs Cycle

The Krebs Cycle is a multi-step process, and each step is crucial for extracting energy from Acetyl-CoA. Let’s explore how this process works in a more detailed and relatable way.

When we eat food, our body breaks it down into smaller molecules, one of which is glucose. Glucose is further broken down through a process called glycolysis, which occurs in the cytoplasm of the cell. This results in the formation of a compound known as pyruvate. Under aerobic conditions, meaning when oxygen is available, pyruvate is transported into the mitochondria. Here, it is converted into Acetyl-CoA, which then enters the Krebs Cycle.

Step-by-Step Breakdown of the Krebs Cycle

  1. Formation of Citric Acid: The cycle begins when Acetyl-CoA combines with a four-carbon molecule called Oxaloacetic acid and a molecule of water. This reaction produces a six-carbon molecule called Citric acid and releases Coenzyme A. This step is catalyzed by an enzyme called Citrate Synthase. You can think of this step as the starting point of a journey where smaller units (like Acetyl-CoA) are combined to create something larger (Citric acid).
  2. Conversion of Citric Acid to Isocitric Acid: In the next stage, Citric acid undergoes a transformation to form Cis-aconitic acid, facilitated by the enzyme Aconitase. This is quickly followed by another reaction where Cis-aconitic acid is converted into Isocitric acid. These transformations are necessary to prepare the molecule for subsequent steps where energy will be extracted.
  3. First Oxidation and Decarboxylation: Isocitric acid then reacts with NAD+ (a coenzyme) to form Oxalosuccinic acid. This reaction, catalyzed by Isocitrate Dehydrogenase, produces NADH and releases a hydrogen ion. The next step involves the decarboxylation of Oxalosuccinic acid, where it loses a carbon dioxide molecule to form α-Ketoglutaric acid. This step is significant because it is one of the points where energy is captured in the form of NADH and CO2 is released as a byproduct.
  4. Second Oxidation and Decarboxylation: Next, α-Ketoglutaric acid undergoes another oxidation reaction, again reacting with NAD+ and Coenzyme A (CoA). This reaction, catalyzed by the enzyme α-Ketoglutarate Dehydrogenase, produces Succinyl CoA, NADH, another hydrogen ion, and releases carbon dioxide. This step is another critical point in the cycle where energy is extracted and carbon dioxide is expelled.
  5. Generation of ATP: The high-energy molecule Succinyl CoA then reacts with ADP (Adenosine Diphosphate) and inorganic phosphate (Pi), resulting in the formation of Succinic acid, ATP, and Coenzyme A. This step, catalyzed by Succinyl-CoA Synthetase, is one of the few direct points in cellular respiration where ATP is generated. Think of this step as the reward for all the earlier work—the cell finally gets a direct shot of energy in the form of ATP.
  6. Further Oxidation and Regeneration of Oxaloacetate: The cycle continues with the conversion of Succinic acid into Fumaric acid through a reaction with FAD (Flavin Adenine Dinucleotide), catalyzed by Succinate Dehydrogenase. This reaction produces FADH2, another molecule that will eventually contribute to ATP production.
    Next, Fumaric acid reacts with water to form Malic acid, catalyzed by the enzyme Fumarase. Finally, Malic acid undergoes oxidation, reacting with NAD+ to form Oxaloacetic acid, NADH, and a hydrogen ion. This last step is facilitated by Malate Dehydrogenase and regenerates Oxaloacetate, the molecule that started the cycle, allowing the process to continue.

Summary

To sum up, the Krebs Cycle is a complex but incredibly efficient process that takes place in the mitochondrial matrix. It breaks down Acetyl-CoA into carbon dioxide and generates energy-rich molecules like ATP, NADH, and FADH2. Each turn of the cycle produces three NADH molecules, one FADH2 molecule, and one ATP (or GTP) molecule. These energy carriers, NADH and FADH2, later enter the electron transport chain to generate more ATP, while carbon dioxide is expelled as a waste product. This cycle is fundamental to life because it provides the energy needed for countless cellular processes, ensuring that our bodies can function efficiently, much like how fuel keeps a car running smoothly.