Circle (SAQs)
Maths-2B | 1. Circle – SAQs:
Welcome to SAQs in Chapter 1: Circle. This page contains the most Important FAQs for Short Answer Questions in this Chapter. Each answer is provided in simple and easy-to-understand steps. This will support your preparation and help you secure top marks in your exams.
SAQ-1 : Find the length of the chord intercepted by the circle x2+y2-8x-2y-8=0 on the line x+y+1=0
Given circle is $$x^2 + y^2 – 8x – 2y – 8 = 0$$
It’s Centre $$C = (4,1)$$ radius $$r = \sqrt{16 + 1 + 8} = \sqrt{25} = 5$$
Perpendicular distance from the centre (4,1) to the line $$x + y + 1 = 0$$
$$P = \frac{|4 + 1 + 1|}{\sqrt{1^2 + 1^2}} = \frac{6}{\sqrt{2}} = 3\sqrt{2}$$
Length of the chord
$$= 2\sqrt{r^2 – p^2} = 2\sqrt{5^2 – (3\sqrt{2})^2}$$
$$= 2\sqrt{25 – 18} = 2\sqrt{7}$$
SAQ-2 : Find the length of the chord intercepted by the circle x2+y2-x+3y-22=0 on the line y=x-3
Given circle $$x^2 + y^2 – x + 3y – 22 = 0$$
Its Center $$C = \left(\frac{1}{2}, -\frac{3}{2}\right)$$ radius $$r = \sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{3}{2}\right)^2 + 22} = \sqrt{\frac{1}{4} + \frac{9}{4} + 22}$$
$$= \sqrt{\frac{1}{4} + \frac{9}{4} + \frac{88}{4}} = \sqrt{\frac{98}{4}} = \sqrt{\frac{49}{2}} = \frac{7}{\sqrt{2}}$$
Perpendicular distance from the centre $$\left(\frac{1}{2},-\frac{3}{2}\right)$$ to the line $$y = x – 3$$
$$⇒ x – y – 3 = 0$$
$$P = \frac{| \frac{1}{2} – \left(-\frac{3}{2}\right) – 3|}{\sqrt{1^2 + (-1)^2}} = \frac{| \frac{1}{2} + \frac{3}{2} – 3|}{\sqrt{2}} = \frac{| 1 – 3 |}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$
Length of the chord
$$= 2\sqrt{r^2 – p^2} = 2\sqrt{\left(\frac{7}{\sqrt{2}}\right)^2 – \left(\frac{1}{\sqrt{2}}\right)^2} = 2\sqrt{\frac{49}{2} – \frac{1}{2}} = 2\sqrt{\frac{48}{2}} = 2\sqrt{24}$$
SAQ-3 : Find the mid point of the chord intercepted by x2+y2-2x-10y+1=0 on the line x – 2y + 7 =0. Also find the length of the chord
(i) To find the length of the chord:
The perpendicular distance from $$C(1,5)$$ to $$x – 2y + 7 = 0$$ is $$P = \left| \frac{1 – 10 + 7}{\sqrt{1^2 + (-2)^2}} \right| = \frac{2}{\sqrt{5}}$$
Length of the chord is $$2\sqrt{r^2 – p^2} = 2\sqrt{25 – \frac{4}{5}} = 2\sqrt{\frac{125 – 4}{5}} = 2\sqrt{\frac{121}{5}} = \frac{2 \times 11}{\sqrt{5}} = \frac{22}{\sqrt{5}}$$
(ii) To find the midpoint of the chord:
For the given circle $$x^2 + y^2 – 2x – 10y + 1 = 0$$ centre $$C = (-g,-f) = (1,5)$$ radius $$r = \sqrt{(-1)^2 + (-5)^2 – 1} = 5$$
Midpoint of the chord = Foot of the perpendicular (h,k) from the centre C=(1,5) onto
$$x – 2y + 7 = 0$$
$$\begin{align} \frac{h-1}{1} &= \frac{k-5}{-2} = \frac{-(1 – 10 + 7)}{1^2 + (-2)^2} \ \frac{h-1}{1} &= \frac{k-5}{-2} = \frac{2}{5} \ \end{align}$$
Thus, $$(\frac{7}{5}, \frac{21}{5})$$ is the midpoint of the given chord.
SAQ-4 : If a point P is moving such that the lengths of tangents drawn from P to the circles x2+y2-4x-6y-12=0 and x2+y2+6x+18y+26=0 are in the ratio 2:3 then find the equation of the locus of P
Let $$P(x_1, y_1)$$ be a point on the locus.
Let PT1 be the length of the tangent from P to $$S = x^2 + y^2 – 4x – 6y – 12 = 0$$
and PT2 be the length of the tangent from P to $$S’ = x^2 + y^2 + 6x + 18y + 26 = 0$$
Given that $$PT_1 : PT_2 = 2 : 3$$
$$\Rightarrow \frac{PT_1}{PT_2} = \frac{2}{3}$$
$$\Rightarrow 3PT_1 = 2PT_2$$
$$\Rightarrow 9(PT_1)^2 = 4(PT_2)^2$$
$$\Rightarrow 9[x_1^2 + y_1^2 – 4x_1 – 6y_1 – 12] = 4[x_1^2 + y_1^2 + 6x_1 + 18y_1 + 26]$$
$$\Rightarrow 9x_1^2 + 9y_1^2 – 36x_1 – 54y_1 – 108 = 4x_1^2 + 4y_1^2 + 24x_1 + 72y_1 + 104$$
$$\Rightarrow 5x_1^2 + 5y_1^2 – 60x_1 – 126y_1 – 212 = 0$$
Equation of the locus of $$P(x_1, y_1)$$ is $$5x^2 + 5y^2 – 60x – 126y – 212 = 0$$
SAQ-5 : Show that x + y + 1 = 0 is touches the circle x2+y2-3x+7y+14=0 and find its point of contact
(i) To show that x + y + 1 = 0 touches the circle:
For the given circle $$x^2 + y^2 – 3x + 7y + 14 = 0$$ Centre $$C = \left(\frac{3}{2},-\frac{7}{2}\right)$$ radius $$r = \sqrt{g^2 + f^2 – c} = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{7}{2}\right)^2 – 14} = \sqrt{\frac{9}{4} + \frac{49}{4} – 14} = \sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}$$
The perpendicular distance from $$C\left(\frac{3}{2},-\frac{7}{2}\right)$$ to $$x + y + 1 = 0$$
$$P = \frac{\left|\frac{3}{2} + \left(-\frac{7}{2}\right) + 1\right|}{\sqrt{1^2 + 1^2}} = \frac{\left|-\frac{4}{2}\right|}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$
Since $$P = r$$ the line $$x + y + 1 = 0$$ touches the circle.
(ii) To find the point of contact:
Point of contact = foot of the perpendicular (h,k) from $$C\left(\frac{3}{2},-\frac{7}{2}\right)$$ onto $$x + y + 1 = 0$$
$$h – x_1/a = k – y_1/b = -(ax_1 + by_1 + c)/(a^2 + b^2)$$
$$h – \frac{3}{2}/1 = k + \frac{7}{2}/1 = -\left(\frac{3}{2} + \left(-\frac{7}{2}\right) + 1\right)/(1^2 + 1^2) = \frac{1}{2}$$
Thus, the point of contact is $$(h,k) = (2, -3)$$
SAQ-6 : Find the equation of tangent of x2+y2-2x+4y=0 at (3,-1). Also find the equation of other tangent parallel to it
(i) To find the tangent at (3,−1):
The equation of the tangent at (3,−1) on $$S = x^2 + y^2 – 2x + 4y = 0$$ is $$S_1 = 0$$
$$\Rightarrow x(3) + y(-1) – (x + 3) + 2(y – 1) = 0$$
$$\Rightarrow 3x – y – x – 3 + 2y – 2 = 0$$
$$\Rightarrow 2x + y – 5 = 0$$
(ii) To find the parallel tangent:
Slope of the tangent $$2x + y – 5 = 0$$ is $$m = -2$$
Also $$x^2 + y^2 – 2x + 4y = 0$$
$$\Rightarrow g = -1 f = 2$$
Radius $$r = \sqrt{1^2 + 2^2 – 0} = \sqrt{5}$$
Formula: Equation of the tangents with slope m is $$y + f = m(x + g) \pm r\sqrt{1 + m^2}$$
$$\Rightarrow (y + 2) = -2(x – 1) \pm \sqrt{5} \sqrt{1 + 4}$$
$$\Rightarrow (y + 2) = -2(x – 1) \pm 5$$
$$\Rightarrow 2x + y \pm 5 = 0$$
The equation of the parallel tangent is $$2x + y + 5 = 0$$
SAQ-7 : Find the equations of the tangents to the circle x2+y2-4x+6y-12=0 and parallel to the line x + y – 8 =0
For the given circle $$x^2 + y^2 – 4x + 6y – 12 = 0$$ the centre is $$C = (2,3)$$ and the radius $$r = \sqrt{(-2)^2 + (3)^2 + 12} = \sqrt{4 + 9 + 12} = \sqrt{25} = 5$$
The given line is $$x + y – 8 = 0$$
Any line parallel to the given line is of the form $$x + y + k = 0$$
$$\Rightarrow \left| \frac{2 + 3 + k}{\sqrt{1^2 + 1^2}} \right| = 5$$
$$\Rightarrow \left| \frac{k + 5}{\sqrt{2}} \right| = 5$$
$$\Rightarrow |k + 5| = 5\sqrt{2}$$
$$\Rightarrow k + 5 = \pm 5\sqrt{2}$$
$$\Rightarrow k = -5 \pm 5\sqrt{2}$$
Hence, the equations of the required tangents are: $$x + y + 1 \pm 5\sqrt{2} = 0$$
SAQ-8 : Find the pole of the line x + y + 2 = 0 w.r.t the circle x2+y2-4x+6y-12=0
Let $$P(x_1,y_1)$$ be the pole of $$x + y + 2 = 0$$
Then the polar of $$P(x_1,y_1)$$ with respect to
$$S = x^2 + y^2 – 4x + 6y – 12 = 0$$ is $$S_1 = 0$$
$$\Rightarrow x_1x + y_1y – 2(x_1 + x) + 3(y_1 + y) – 12 = 0$$
$$\Rightarrow (x_1 – 2)x + (y_1 + 3)y – 2x_1 + 3y_1 – 12 = 0$$
Comparing the above with x + y + 2 = 0 we get
$$\frac{x_1 – 2}{1} = \frac{y_1 + 3}{1} = \frac{-2x_1 + 3y_1 – 12}{2} = k$$
$$\Rightarrow x_1 – 2 = k; \quad y_1 + 3 = k; \quad \text{and} \quad -2x_1 + 3y_1 – 12 = 2k$$
$$\Rightarrow x_1 = k + 2, \quad y_1 = k – 3$$
Solving $$-2(k + 2) + 3(k – 3) – 12 = 2k$$
$$\Rightarrow -2k – 4 + 3k – 9 – 12 = 2k$$
$$\Rightarrow k = -25$$
$$x_1 = k + 2 = -25 + 2 = -23 \quad \text{and} \quad y_1 = k – 3 = -25 – 3 = -28$$
Thus, the pole $$P(x_1,y_1) = (-23,-28)$$
SAQ-9 : Find the pole of the line 3x + 4y – 45 = 0 w.r.t the circle x2+y2-6x-8y+5=0
Let $$P(x_1,y_1)$$ be the pole of $$3x + 4y – 45 = 0$$
Then the polar of $$P(x_1,y_1)$$ with respect to
$$S = x^2 + y^2 – 6x – 8y + 5 = 0$$ is $$S_1 = 0$$
$$\Rightarrow x_1x + y_1y – 3(x_1 + x) – 4(y_1 + y) + 5 = 0$$
$$\Rightarrow (x_1 – 3)x + (y_1 – 4)y – 3x_1 – 4y_1 + 5 = 0$$
Comparing the above with $$3x + 4y – 45 = 0$$ we get
$$\frac{x_1 – 3}{3} = \frac{y_1 – 4}{4} = \frac{-3x_1 – 4y_1 + 5}{-45} = k$$
$$\Rightarrow x_1 – 3 = 3k; \quad y_1 – 4 = 4k; \quad \text{and} \quad -3x_1 – 4y_1 + 5 = -45k$$
Solving for x1 and y1: $$x_1 = 3 + 3k; \quad y_1 = 4 + 4k$$
Substituting x1 and y1 into $$3x_1 + 4y_1 – 5 = 45k$$
$$3(3 + 3k) + 4(4 + 4k) – 5 = 45k$$
$$9 + 9k + 16 + 16k – 5 = 45k$$
$$25 + 25k – 5 = 45k$$
$$20 + 25k = 45k$$
$$20k = 20$$
$$k = 1$$
Therefore, $$x_1 = 3 + 3(1) = 6$$ and $$y_1 = 4 + 4(1) = 8$$
Pole $$P(x_1,y_1) = (6,8)$$
SAQ-10 : Find the value of K if Kx + 3y – 1 = 0 and 2x + y + 5 = 0 are conjugate with respect to the circle x2+y2-2x-4y-4=0
From the given lines, we have $$l_1 = k m_1 = 3 n_1 = -1 l_2 = 2 m_2 = 1 n_2 = 5$$
The given circle is $$x^2 + y^2 – 2x – 4y – 4 = 0$$
$$\Rightarrow g = -1 f = -2 c = -4$$
radius $$r = \sqrt{(-1)^2 + (-2)^2 + 4} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$
Conjugate lines condition: $$r^2(l_1l_2 + m_1m_2) = (l_1g + m_1f – n_1)(l_2g + m_2f – n_2)$$
$$\Rightarrow 3^2[(k \cdot 2) + 3 \cdot 1] = [k(-1) + 3(-2) + 1][2(-1) + 1(-2) – 5]$$
$$\Rightarrow 9(2k + 3) = (-k – 6 + 1)(-2 – 2 – 5)$$
$$\Rightarrow 9(2k + 3) = (-k – 5)(-9)$$
$$\Rightarrow 18k + 27 = 9k + 45$$
$$\Rightarrow 18k – 9k = 45 – 27$$
$$\Rightarrow 9k = 18$$
$$\Rightarrow k = 2$$
Hence, the value of k is 2.