Real Numbers (VSAQs)


VSAQ-1 : Find the value of log5125

$$\text{Let } x = \log_5 125$$

$$= \log_5 5^3$$

$$= 3 \log_5 5$$

$$= 3$$


VSAQ-2 : If HCF (a, b) = 12 and a x b = 1800, then find LCM (a, b)

$$\text{Given, HCF }(a, b) = 12$$

$$a \times b = 1800$$

$$\text{We know that LCM }(a, b) \times \text{HCF }(a, b) = a \times b$$

$$\text{LCM }(a, b) = \frac{a \times b}{\text{HCF }(a,b)} = \frac{1800}{12}$$

$$= 150$$


VSAQ-3 : Find H.C.F and L.C.M of 220 and 284 by prime factorisation method

$$220 = 2 \times 2 \times 5 \times 11$$

$$= 2^2 \times 5 \times 11$$

$$284 = 2 \times 2 \times 71$$

$$= 2^2 \times 71$$

$$\text{HCF }(220, 284) = 2^2 = 4$$

$$\text{LCM }(220, 284) = 2^2 \times 5 \times 11 \times 71 = 15620$$


VSAQ-4 : Expand log 128/625

$$\log \frac{128}{625} = \log 128 – \log 625$$

$$= \log 2^7 – \log 5^4$$

$$= 7 \log 2 – 4 \log 5$$


VSAQ-5 : Expand log a3b2c5

$$\log(a^3 b^2 c^5) = \log(a^3) + \log(b^2) + \log(c^5)$$

$$= 3\log(a) + 2\log(b) + 5\log(c)$$


VSAQ-6 : Find the HCF of 24 and 33 by using division algorithm

$$\text{Since } 33 > 24$$

$$\text{We apply Euclid division algorithm to } 33 \text{ and } 24$$

$$33 = 24 \times 1 + 9$$

$$24 = 9 \times 2 + 6$$

$$9 = 6 \times 1 + 3$$

$$6 = 3 \times 2 + 0$$

$$\text{HCF of } 24 \text{ and } 33 \text{ is } 3$$


VSAQ-7 : Determine the value of log100.01

$$\log_{10} 100.01 = \log_{10} \left(\frac{1}{100}\right)$$

$$= \log_{10} \left(\frac{1}{10^2}\right)$$

$$= \log_{10} \left(10^{-2}\right)$$

$$= -2 \log_{10} 10$$

$$= -2$$


VSAQ-8 : Ramu says, if log10x = 0, value of x = 0. Do you agree with him? Give reason

$$\text{Given, } \log_{10} x = 10$$

$$x = 10^{10}$$

$$x = 0$$

$$\text{If } \log_{10} x = 0 \text{ then,}$$

$$10^0 = x$$

$$x = 1 \neq 0$$

$$\text{So, I don’t agree with Ramu.}$$


VSAQ-9 : Find the value of log√2128

$$\text{Let } \log_{\sqrt{2}} 128 = x$$

$$(\sqrt{2})^x = 128$$

$$128 = 2^7$$

$$= (\sqrt{2})^{14}$$

$$\text{Bases are equal so powers should also be equal}$$

$$x = 14$$

$$\log_{\sqrt{2}} 128 = 14$$


VSAQ-10 : Write log 64/729 in its expansion form

$$\log \frac{64}{729} = \log 64 – \log 729$$

$$= \log 2^6 – \log 3^6$$

$$= 6 \log 2 – 6 \log 3$$

$$= 6(\log 2 – \log 3)$$

$$= 6 \log \left(\frac{2}{3}\right)$$