Quadratic Expressions (VSAQs)

Maths-2A | 3. Quadratic Expressions – VSAQs:
Welcome to VSAQs in Chapter 3: Quadratic Expressions. This page contains the most important VSAQs in this chapter. Aim to secure top marks in your exams by understanding these clear and straightforward Very Short Answer Questions.


VSAQ-1 : Find the nature of the roots of 3x2+7x+2=0

Here $$a = 3, b = 7, c = 2$$

$$\Delta = b^2 – 4ac = (7)^2 – 4(3)(2)$$

$$= 49 – 4(6) = 49 – 24 = 25 = 5^2 > 0$$

Here Δ is positive and a perfect square.

Hence, the roots are rational and unequal.


VSAQ-2 : Prove that the roots of (x-a)(x-b) = h2

The equation is $$(x-a)(x-b) = h^2$$

$$\Rightarrow x^2 – (a + b)x + ab – h^2 = 0$$

Now, $$\Delta = (a + b)^2 – 4(ab – h^2)$$

$$= (a + b)^2 – 4ab + 4h^2 = (a – b)^2 + (2h)^2 > 0$$

Here Δ is positive.

Hence, the roots are real.


VSAQ-3 : Form a quadratic equation, whose roots are 7 ± 2√5

We take $$\alpha = 7 + 2\sqrt{5}$$ and $$\beta = 7 – 2\sqrt{5}$$

$$\Rightarrow \alpha + \beta = (7 + 2\sqrt{5}) + (7 – 2\sqrt{5}) = 14$$

$$\alpha\beta = (7 + 2\sqrt{5})(7 – 2\sqrt{5}) = 49 – 20 = 29$$

The quadratic equation with roots α,β is $$x^2 – (\alpha + \beta)x + \alpha\beta = 0$$

$$\Rightarrow x^2 – 14x + 29 = 0$$


VSAQ-4 : Form a quadratic equation, whose roots are (-3±5i)

Let $$\alpha = -3 + 5i$$ and $$\beta = -3 – 5i$$

$$\Rightarrow \alpha + \beta = (-3 + 5i) + (-3 – 5i) = -6$$

$$\alpha\beta = (-3 + 5i)(-3 – 5i) = 9 + 25 = 34$$

The quadratic equation with roots α,β is $$x^2 – (\alpha + \beta)x + \alpha\beta = 0$$

$$\Rightarrow x^2 + 6x + 34 = 0$$


VSAQ-5 : If α,β are the roots of the equation ax2+bx+c=0, find the value of 1/α+1/β

Given α,β are the roots of $$ax^2 + bx + c = 0$$

$$\Rightarrow \text{Sum of the roots } \alpha + \beta = -\frac{b}{a}$$

$$\text{Product of the roots } \alpha\beta = \frac{c}{a}$$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{-b}{a} \cdot \frac{a}{c} = -\frac{b}{c}$$


VSAQ-6 : If α,β are the roots of the equation ax2+bx+c= 0 then find 1/α2 +1/β2

Given α,β are roots of $$ax^2 + bx + c = 0$$

$$\Rightarrow \alpha + \beta = -\frac{b}{a}$$ and $$\alpha\beta = \frac{c}{a}$$

$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^2 – 2\alpha\beta}{(\alpha\beta)^2}$$

$$= \left(\frac{-b}{a}\right)^2 – \frac{2\left(\frac{c}{a}\right)}{\left(\frac{c}{a}\right)^2}$$

$$= \frac{b^2}{a^2} – \frac{2c}{a} \cdot \frac{a^2}{c^2}$$

$$= \frac{b^2}{a^2} – \frac{2ac}{c^2}$$

$$= \frac{b^2 – 2ac}{c^2}$$


VSAQ-7 : Find the maximum or minimum value of the expression x2-x+7

Comparing $$x^2 – x + 7$$ with $$ax^2 + bx + c$$ we get $$a = 1$$ $$b = -1$$ $$c = 7$$

Here, $$a = 1 > 0$$

So, we get the minimum value.

The minimum value is

$$\frac{4ac – b^2}{4a} = \frac{4(1)(7) – (-1)^2}{4(1)} = \frac{28 – 1}{4} = \frac{27}{4}$$


VSAQ-8 : Find the maximum or minimum value of 2x-7-5x2 where x∈R

Comparing $$2x – 7 – 5x^2$$ with $$ax^2 + bx + c$$ we get $$a = -5$$ $$b = 2$$ $$c = -7$$

Here, $$a = -5 < 0$$

So, we get the maximum value.

The maximum value is

$$\frac{4ac – b^2}{4a} = \frac{4(-5)(-7) – 2^2}{4(-5)} = \frac{140 – 4}{-20} = \frac{136}{-20} = -\frac{34}{5}$$


VSAQ-9 : Find the values of m, if the equation x2-15-m(2x-8)=0 have equal roots

Given equation is $$x^2 – 15 – m(2x – 8) = 0$$

$$\Rightarrow x^2 – 15 – 2mx + 8m = 0$$

$$\Rightarrow x^2 – 2mx + (8m – 15) = 0$$

Comparing with $$ax^2 + bx + c = 0$$ we get

$$a = 1$$

$$b = -2m$$

$$c = 8m – 15$$

But roots are equal,

$$\Delta = b^2 – 4ac = 0$$

$$\Rightarrow (-2m)^2 – 4(1)(8m – 15) = 0$$

$$\Rightarrow 4m^2 – 32m + 60 = 0$$

$$\Rightarrow 4(m^2 – 8m + 15) = 0$$

$$\Rightarrow m^2 – 8m + 15 = 0$$

$$\Rightarrow m^2 – 5m – 3m + 15 = 0$$

$$\Rightarrow m(m-5) – 3(m-5) = 0$$

$$\Rightarrow (m-3)(m-5) = 0$$

$$\Rightarrow m = 3, 5$$


VSAQ-10 : For what values of m. x2+(m+3)x+(m+6)=0 will have equal roots?

Given equation is $$x^2 + (m+3)x + (m+6) = 0$$

Comparing with $$ax^2 + bx + c = 0$$ we get

$$a = 1$$

$$b = m + 3$$

$$c = m + 6$$

But roots are equal,

$$\Delta = b^2 – 4ac = 0$$

$$\Rightarrow (m+3)^2 – 4(1)(m+6) = 0$$

$$\Rightarrow m^2 + 6m + 9 – 4m – 24 = 0$$

$$\Rightarrow m^2 + 2m – 15 = 0$$

$$\Rightarrow m^2 + 5m – 3m – 15 = 0$$

$$\Rightarrow m(m+5) – 3(m+5) = 0$$

$$\Rightarrow (m-3)(m+5) = 0$$

$$\Rightarrow m = 3, -5$$


VSAQ-11 : If x2-6x+5=0 and x2-12x+p=0 have a common root then find p

Let α be the common root.

Then, $$\alpha^2 – 6\alpha + 5 = 0$$ and $$\alpha^2 – 12\alpha + p = 0$$

$$\Rightarrow (\alpha-1)(\alpha-5) = 0$$

$$\Rightarrow \alpha = 1 \text{ or } \alpha = 5$$

Put $$\alpha = 1$$ in $$\alpha^2 – 12\alpha + p = 0$$

$$\Rightarrow 1^2 – 12(1) + p = 0$$

$$\Rightarrow p = 12 – 1 = 11$$

Put $$\alpha = 5$$ in $$\alpha^2 – 12\alpha + p = 0$$

$$\Rightarrow 5^2 – 12(5) + p = 0$$

$$\Rightarrow 25 – 60 + p = 0$$

$$\Rightarrow p = 60 – 25 = 35$$


VSAQ-12 : If the equations x2-6x+5=0, x2-3ax+35=0 have a common root then find a

Let α be the common root.

Then, $$\alpha^2 – 6\alpha + 5 = 0$$ and $$\alpha^2 – 3a\alpha + 35 = 0$$

$$\Rightarrow (\alpha-1)(\alpha-5) = 0$$

$$\Rightarrow \alpha = 1 \text{ or } \alpha = 5$$

Put $$\alpha = 1$$ in $$\alpha^2 – 3a\alpha + 35 = 0$$

$$\Rightarrow 1^2 – 3a(1) + 35 = 0$$

$$\Rightarrow 3a = 36$$

$$\Rightarrow a = 12$$

Put $$\alpha = 5$$ in $$\alpha^2 – 3a\alpha + 35 = 0$$

$$\Rightarrow 5^2 – 3a(5) + 35 = 0$$

$$\Rightarrow 25 – 15a + 35 = 0$$

$$\Rightarrow 15a = 60$$

$$\Rightarrow a = 4$$


VSAQ-13 : If the equations x2+bx+c=0, x2+cx+b=0 have a common root then S.T b+c+1=0

Let α be the common root. Then

$$\alpha^2 + b\alpha + c = 0$$

$$\alpha^2 + c\alpha + b = 0$$

$$\alpha^2 + b\alpha + c – (\alpha^2 + c\alpha + b) = 0$$

$$\Rightarrow b\alpha – c\alpha + c – b = 0$$

$$\Rightarrow \alpha(b – c) = b – c$$

$$1^2 + b(1) + c = 0$$

$$\Rightarrow 1 + b + c = 0$$


VSAQ-14 : If the equations x2+ax+b=0 and x2+cx+d=0 have a common root and the first equation has equal roots then prove that 2(b+d)=ac

Let α be the common root then

$$\alpha^2 + a\alpha + b = 0 \quad \text{(1)}$$

$$\alpha^2 + c\alpha + d = 0 \quad \text{(2)}$$

Also, since $$\alpha^2 + a\alpha + b = 0$$ has equal roots:

$$\Delta = 0 \Rightarrow a^2 – 4b = 0$$

$$\alpha + \alpha = -a \Rightarrow 2\alpha = -a \Rightarrow \alpha = -\frac{a}{2}$$

$$\alpha \cdot \alpha = b \Rightarrow \alpha^2 = b$$

Put these values in equation (2):

$$b + c\left(-\frac{a}{2}\right) + d = 0$$

$$\Rightarrow b + d = \frac{ac}{2}$$

$$\Rightarrow 2(b + d) = ac$$