Measures Of Dispersion (LAQs)
Maths-2A | 8. Measures Of Dispersion – LAQs:
Welcome to LAQs in Chapter 8: Measures Of Dispersion. This page contains the most Important FAQs for Long Answer Questions in this Chapter. Each answer is provided in simple and easy-to-understand steps. This will support your preparation and help you secure top marks in your exams.
LAQ-1 : Find the mean deviation about the mean for the given data using ‘step deviation method’
Marks obtained | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
We take the assumed mean A = 25 Here C = 10 Hence we form the following table
Class interval | frequency fi | Midpoint xi | di = xi-25/10 | fidi | |xi – x| | fi |xi – x| |
0-10 | 5 | 5 | -2 | -10 | 22 | 110 |
10-20 | 8 | 15 | -1 | -8 | 12 | 96 |
20-30 | 15 | 25 A | 0 | 0 | 2 | 30 |
30-40 | 16 | 35 | 1 | 16 | 8 | 128 |
40-50 | 6 | 45 | 2 | 12 | 18 | 108 |
∑fi = 50 = N | ∑fidi = 10 | ∑fi |xi – x| = 472 |
Here, N = 50 So Mean $$x = A + C(\sum f_i d_i / N) = 25 + 10(10/50) = 25 + 2 = 27$$
Mean deviation about the mean $$M.D = 1/N \sum_{i=1}^5 f_i |x_i – x| = 1/50(472) = 9.44$$
LAQ-2 : Find the mean deviation about the mean for the following continuous distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
No. of students | 6 | 5 | 8 | 15 | 7 | 6 | 3 |
We take assumed mean A = 35 Here C = 10 Hence we form the following table
Class Interval | Midpoint (xi) | Number of students (fi) | di = xi – 25/10 | fidi | |xi – x| | fi |xi – x| |
0-10 | 5 | 6 | -3 | -18 | 28.4 | 170.4 |
10-20 | 15 | 5 | -2 | -10 | 18.4 | 92 |
20-30 | 25 | 8 | -1 | -8 | 8.4 | 67.2 |
30-40 | 35 | 15 | 0 | 0 | 1.6 | 24.0 |
40-50 | 45 | 7 | 1 | 7 | 11.6 | 81.2 |
50-60 | 55 | 6 | 2 | 12 | 21.6 | 129.6 |
60-70 | 65 | 3 | 3 | 9 | 31.6 | 94.8 |
∑fi = 50 = N | ∑fidi = -8 | 659.2 |
Here N = 50 So, mean $$x = A + C(\sum f_i d_i / N) = 35 + 10(-8/50) = 35 – 1.6 = 33.4$$
Mean deviation about the mean $$M.D = 1/N \sum f_i |x_i – x| = 1/50(659.2) = 13.184$$
LAQ-3 : Find the mean deviation about median for the following data:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
No. of boys | 6 | 8 | 14 | 16 | 4 | 2 |
We form the following table from the given data
Marks | Number of Boys (fi) | Cumulative frequency (c.f) | Midpoints xi | |xi – M| | fi |xi – M| |
0-10 | 6 | 6 | 5 | 22.86 | 137.16 |
10-20 | 8 | 14 | 15 | 12.86 | 102.88 |
20-30 | 14 | 28 | 25 | 2.86 | 40.04 |
30-40 | 16 | 44 | 35 | 7.14 | 114.24 |
40-50 | 4 | 48 | 45 | 17.14 | 68.56 |
50-60 | 2 | 50 | 55 | 27.14 | 54.28 |
∑fi = 50 = N | 517.16 |
Median class = class containing (50/2)th item = 25th item
Thus Median class = (20-30) class
Here i = 20, C = 10, f = 14, m = 14, N = 50
Median $$M = l + \frac{C}{f}(N/2 – m) = 20 + \frac{10}{14}(25 – 14) = 20 + 7.86 = 27.86$$
Mean deviation about the median $$M.D = \frac{\sum f_i |x_i – M|}{N} = \frac{517.16}{50} = 10.34$$
LAQ-4 : Find the mean deviation about median for the following data:
xi | 6 | 9 | 3 | 12 | 15 | 13 | 21 | 22 |
fi | 4 | 5 | 3 | 2 | 5 | 4 | 4 | 3 |
We form the following table by writing the given data in ascending order
xi | fi | c.f | |xi – M| | fi |xi – M| |
3 | 3 | 3 | 10 | 30 |
6 | 4 | 7 | 7 | 28 |
9 | 5 | 12 | 4 | 20 |
12 | 2 | 14 | 1 | 2 |
13 | 4 | 18 | 0 | 0 |
15 | 5 | 23 | 2 | 10 |
21 | 4 | 27 | 8 | 32 |
22 | 3 | 30 | 9 | 27 |
N=30 | 149 |
$$N/2 = (30/2) = 15$$
So Median $$M = 13$$
Median deviation about median $$M.D = \sum f_i |x_i – M|/N = 149/30 = 4.97$$
LAQ-5 : Calculate the variance and standard deviation for the following distribution:
Class | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
Frequency | 3 | 7 | 12 | 15 | 8 | 3 | 2 |
Here h = 10 we take the assumed mean A = 65
Here C = 10 then di = xi – 65/10 we form the following table with the given data
Class Interval (C.I) | frequency (fi) | Midpoint of C.I. (xi) | di = xi – 65/10 | di2 | fidi | fidi2 |
30-40 | 3 | 35 | -3 | 9 | -9 | 27 |
40-50 | 7 | 45 | -2 | 4 | -14 | 28 |
50-60 | 12 | 55 | -1 | 1 | -12 | 15 |
60-70 | 15 | 65 | 0 | 0 | 0 | 0 |
70-80 | 8 | 75 | 1 | 1 | 8 | 8 |
80-90 | 3 | 85 | 2 | 4 | 6 | 12 |
90-100 | 2 | 95 | 3 | 9 | 6 | 18 |
∑fi = 50 = N | ∑fidi = -15 | ∑fidi2 = 105 |
Here $$N = 50$$ $$\sum f_i d_i = -15$$ $$\sum f_i d_i^2 = 105$$
Variance $$\sigma^2 = C^2[\sum (f_i d_i^2)/N – (\sum (f_i d_i)/N)^2] = 10^2[105/50 – (-15/50)^2]$$
$$= 100[105/50 – 225/2500]$$
$$= 100[(105)(50)-225/2500]$$
LAQ-6 : Find the variance and standard deviation of the following frequency distribution
xi | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
fi | 3 | 5 | 9 | 5 | 4 | 3 | 1 |
Here $$N = \sum f_i = 3 + 5 + 9 + 5 + 4 + 3 + 1 = 30$$
Also $$\sum f_i x_i = 4(3) + 8(5) + 11(9) + 17(5) + 20(4) + 24(3) + 32(1) = 420$$
$$x = \frac{\sum f_i x_i}{N} = \frac{420}{30} = 14$$
xi | fi | fixi | xi – x | (xi – x)2 | fi(xi – x)2 |
4 | 3 | 12 | -10 | 100 | 300 |
8 | 5 | 40 | -6 | 36 | 180 |
11 | 9 | 99 | -3 | 9 | 81 |
17 | 5 | 85 | 3 | 9 | 45 |
20 | 4 | 80 | 6 | 36 | 144 |
24 | 3 | 72 | 10 | 100 | 300 |
32 | 1 | 32 | 18 | 324 | 324 |
∑fixi = 420 | ∑fi(xi – x)2 = 1374 |
Variance $$\sigma^2 = \frac{1}{N}\sum f_i(x_i – x)^2 = \frac{1}{30}(1374) = 45.8$$
Standard Deviation $$\sigma = \sqrt{45.8} = 6.77$$