Circle (VSAQs)
Maths-2B | 1. Circle – VSAQs:
Welcome to VSAQs in Chapter 1: Circle. This page contains the most important VSAQs in this chapter. Aim to secure top marks in your exams by understanding these clear and straightforward Very Short Answer Questions.
VSAQ-1 : If the circle x2+y2-4x+6y+a=0 has radius 4 then find a
Given circle is x^2 + y^2 – 4x + 6y + a = 0
\Rightarrow g = -2 f = 3 c = a
But radius r = 4
\sqrt{g^2 + f^2 – c} = 4
\Rightarrow \sqrt{(-2)^2 + 3^2 – a} = 4
\Rightarrow \sqrt{4 + 9 – a} = 4
\Rightarrow \sqrt{13 – a} = 4
On squaring both sides:
13 – a = 16
\Rightarrow a = 13 – 16 = -3
Hence, the value of a is −3.
VSAQ-2 : If x2+y2-4x+6y+c=0 represents a circle with radius 6, find the value of c
Given circle is x^2 + y^2 – 4x + 6y + c = 0
\Rightarrow g = -2 f = 3 c = c
But radius r = 6
\sqrt{g^2 + f^2 – c} = 6
\Rightarrow \sqrt{(-2)^2 + 3^2 – c} = 6
\Rightarrow \sqrt{4 + 9 – c} = 6
\Rightarrow \sqrt{13 – c} = 6
On squaring both sides:
13 – c = 36
\Rightarrow c = 13 – 36 = -23
Hence, the value of c is −23.
VSAQ-3 : If x2+y2+2gx+2fy=0 has centre (-4,-3) then find g, f and radius
Given the circle equation is x^2 + y^2 + 2gx + 2fy = 0
But the centre C = (-4,-3)
Given (-g,-f) = (-4,-3)
We find that g = 4 and f = 3
Thus, the circle equation becomes x^2 + y^2 + 4x + 6y = 0
The radius r is calculated as \sqrt{g^2 + f^2 – c}
r = \sqrt{(4)^2 + (3)^2 – 0} = \sqrt{16 + 9} = \sqrt{25} = 5
Therefore, the radius of the given circle is 5.
VSAQ-4 : If x2+y2+2gx+2fy-12=0 is a circle with centre (2,3) then find (g,f) and its radius
Given circle is x^2 + y^2 – 4x – 6y – 12 = 0
But Centre C = (2,3)
\Rightarrow (-g,-f) = (2,3)
\Rightarrow g = -2 f = -3
Circle is x^2 + y^2 – 4x – 6y – 12 = 0
Radius r = \sqrt{g^2 + f^2 – c}
= \sqrt{(-2)^2 + (-3)^2 + 12}
= \sqrt{4 + 9 + 12} = \sqrt{25} = 5
VSAQ-5 : Find value of ‘a’ if 2x2+ay2-3x+2y-1=0 represents a circle and also find its radius
In the equation of a circle, we know Coefficient of x2 = Coefficient of y2
\Rightarrow 2 = a
Circle is 2x^2 + 2y^2 – 3x + 2y – 1 = 0
\Rightarrow x^2 + y^2 – \frac{3}{2}x + y – \frac{1}{2} = 0
\Rightarrow g = -\frac{3}{4}, f = \frac{1}{2}, c = -\frac{1}{2}
Radius r = \sqrt{\left(\frac{3}{4}\right)^2 + \left(\frac{1}{2}\right)^2 + \frac{1}{2}}
\Rightarrow r = \sqrt{\frac{9}{16} + \frac{1}{4} + \frac{1}{2}} = \sqrt{\frac{9+4+8}{16}} = \sqrt{\frac{21}{4}}
VSAQ-6 : Find the values of a,b if ax2+bxy+3y2-5x+2y-3=0 represents a circle. Also find the radius and centre
In the equation of a circle, we have:
(i) Coefficient of x2 = Coefficient of y2 \Rightarrow a = 3
(ii) Coefficient of xy = 0 \Rightarrow b = 0
Circle is 3x^2 + 3y^2 – 5x + 2y – 3 = 0
\Rightarrow x^2 + y^2 – \frac{5}{3}x + \frac{2}{3}y – 1 = 0
\Rightarrow g = -\frac{5}{6} f = \frac{1}{3} c = -1
Centre C = \left(\frac{5}{6}, -\frac{1}{3}\right)
r = \sqrt{\left(\frac{5}{6}\right)^2 + \left(\frac{1}{3}\right)^2 + 1} = \sqrt{\frac{25}{36} + \frac{1}{9} + 1} = \sqrt{\frac{25}{36} + \frac{4}{36} + \frac{36}{36}} = \sqrt{\frac{65}{36}} = \frac{\sqrt{65}}{6}
VSAQ-7 : Find the parametric equations of the circle x2+y2-6x+4y-12=0
Given circle is x^2 + y^2 – 6x + 4y – 12 = 0
Centre C = (-g,-f) = (3,-2)
Radius r = \sqrt{(-3)^2 + (2)^2 + 12} = \sqrt{9 + 4 + 12} = \sqrt{25} = 5
Parametric equations:
x = -g + r\cos\theta y = -f + r\sin\theta
\Rightarrow x = 3 + 5\cos\theta y = -2 + 5\sin\theta
VSAQ-8 : Find the Parametric equations of the circle x2+y2+6x+8y-96=0
Given circle is x^2 + y^2 + 6x + 8y – 96 = 0
Centre C = (-g,-f) = (-3,-4) radius r = \sqrt{(-3)^2 + (-4)^2 + 96}
= \sqrt{9 + 16 + 96} = \sqrt{121} = 11
Parametric equations:
x = -g + r\cos\theta y = -f + r\sin\theta
\Rightarrow x = -3 + 11\cos\theta y = -4 + 11\sin\theta
VSAQ-9 : Obtain the parametric equations of the circle (x-3)2+(y-4)2=82
Given circle is (x-3)^2+(y-4)^2=8^2
Centre C = (-g,-f) = (3,4)
\Rightarrow g = -3 f = -4 radius r = 8
Parametric equations:
x = g + r\cos\theta y = f + r\sin\theta
\Rightarrow x = 3 + 8\cos\theta y = 4 + 8\sin\theta
VSAQ-10 : Obtain the parametric equations of the circle 4(x2+y2)=9
Given circle is 4(x^2 + y^2) = 9
\Rightarrow x^2 + y^2 = \frac{9}{4} = \left(\frac{3}{2}\right)^2
Centre C = (-g,-f) = (0,0)
\Rightarrow g = 0 f = 0 radius r = \frac{3}{2}
Parametric equations:
x = r\cos\theta y = r\sin\theta
\Rightarrow x = \left(\frac{3}{2}\right)\cos\theta y = \left(\frac{3}{2}\right)\sin\theta
VSAQ-11 : Find the equation of the circle passing through (-2,3) and with centre at (0,0)
Given centre C = (0,0)
Point on the circle P(-2,3)
radius r = CP = \sqrt{(0+2)^2 + (0-3)^2}
= \sqrt{4 + 9} = \sqrt{13}
Equation of the circle is x^2 + y^2 = 13
VSAQ-12 : Find the equation of the circle whose centre is (-1,2) and which passes through (5,6)
Given Centre C = (1,2) point on the circle P(5,6)
radius r = CP = \sqrt{(1-5)^2 + (2-6)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32}
Circle with centre (1,2) and radius \sqrt{32} is
(x-1)^2 + (y-2)^2 = 32
\Rightarrow (x^2 – 2x + 1) + (y^2 – 4y + 4) = 32
\Rightarrow x^2 + y^2 – 2x – 4y – 27 = 0
VSAQ-13 : Find the equation of the circle passing through the point (-2,14) and concentric with x2+y2-6x-4y-12=0
Equation of the required concentric circle is x^2 + y^2 – 6x – 4y + k = 0
(1) passes through P(-2,14)
\Rightarrow (-2)^2 + 14^2 – 6(-2) – 4(14) + k = 0
\Rightarrow 4 + 196 + 12 – 56 + k = 0
\Rightarrow k = -156
From (1) the required concentric circle is x^2 + y^2 – 6x – 4y – 156 = 0
VSAQ-14 : Find the equation of the circle passing through the point (2,3) and concentric with x2+y2+8x+12y+15=0
Equation of the required concentric circle is x^2 + y^2 + 8x + 12y + k = 0
Since (1) passes through P(2,3)
\Rightarrow 2^2 + 3^2 + 8(2) + 12(3) + k = 0
\Rightarrow 4 + 9 + 16 + 36 + k = 0
\Rightarrow 65 + k = 0
\Rightarrow k = -65
Therefore, from (1) the required concentric circle is x^2 + y^2 + 8x + 12y – 65 = 0
VSAQ-15 : Find the value of K if the length of the tangent from (5,4) to x2+y2+2ky=0 is 1
Length of the tangent from (5,4) to
S = x^2 + y^2 + 2ky = 0 is \sqrt{S_{11}} = 1
On squaring both sides we get S_{11} = 1
\Rightarrow 5^2 + 4^2 + 2k(4) = 1
\Rightarrow 25 + 16 + 8k = 1
\Rightarrow 41 + 8k = 1
\Rightarrow 8k = -40
\Rightarrow k = -40/8 = -5
VSAQ-16 : Find the value of K if the length of the tangent from (2,5) to x2+y2-5x+4y+k=0 is √37
Length of the tangent from (2,5) to S = x^2 + y^2 – 5x + 4y + k = 0 is \sqrt{S_{11}} = \sqrt{37}
On squaring both sides we get S_{11} = 37
\Rightarrow (2)^2 + (5)^2 – 5(2) + 4(5) + k = 37
\Rightarrow 4 + 25 – 10 + 20 + k = 37
\Rightarrow 39 + k = 37
\Rightarrow k = -2
VSAQ-17 : Find the power of the point P(-1,1) w.r.to the circle x2+y2-6x+4y-12=0
Power of P(x_1,y_1) = (-1,1) with respect to
S = x^2 + y^2 – 6x + 4y – 12 is S_{11}
= x_1^2 + y_1^2 – 6x_1 + 4y_1 – 12
= (-1)^2 + 1^2 – 6(-1) + 4(1) – 12
= 1 + 1 + 6 + 4 – 12 = 0
VSAQ-18 : Find the length of the tangent from (1,3) to the circle x2+y2-2x+4y-11=0
Length of tangent from (1,3) to the circle
S = x^2 + y^2 – 2x + 4y – 11 = 0 is \sqrt{S_{11}}
= \sqrt{1^2 + 3^2 – 2(1) + 4(3) – 11} = \sqrt{1 + 9 – 2 + 12 – 11} = \sqrt{9} = 3
VSAQ-19 : Find the value of K if the points (1,3),(2,k) are conjugate w.r.to the circle x2+y2=35
The points (1,3), (2,k) are conjugate to w.r.t the circle S = x^2 + y^2 – 35 = 0
\Rightarrow S_{12} = 0
\Rightarrow x_1x_2 + y_1y_2 – 35 = 0
\Rightarrow (1)(2) + (3)(k) – 35 = 0
\Rightarrow 2 + 3k = 35
\Rightarrow 3k = 33
\Rightarrow k = 11
VSAQ-20 : Find the value of K if the points (4,2), (K,-3) are conjugate with respect to the circle x2+y2-5x+8y+6=0
The points (4,2), (k,-3) are conjugate w.r.t the circle S = x^2 + y^2 – 5x + 8y + 6 = 0
\Rightarrow S_{12} = 0
\Rightarrow 4k + 2(-3) – \frac{5}{2}(4+k) + 4(2-3) + 6 = 0
\Rightarrow 4k – 6 – 10 – \frac{5k}{2} – 4 + 6 = 0
\Rightarrow 4k – \frac{5k}{2} – 14 = 0
\Rightarrow \frac{3k}{2} = 14
\Rightarrow k = \frac{28}{3}
VSAQ-21 : Find the pole of ax+by+c=0 with respect to x2+y2=r2
Let P(x_1,y_1) be the pole.
The equation of the polar of P(x_1,y_1) with respect to
S = 0 S_1 = 0
\Rightarrow x_1x + y_1y – r^2 = 0
Comparing with ax + by + c = 0 we get
x_1/a = y_1/b = -r^2/c
\Rightarrow x_1 = -ar^2/c, \quad y_1 = -br^2/c
Thus, Pole P(x_1,y_1) = (-ar^2/c,-br^2/c)
VSAQ-22 : Find the equation of the polar of (1,-2) w.r.to x2+y2-10x-10y+25=0
Polar of P(1,2) w.r.t the circle
S = x^2 + y^2 – 10x – 10y + 25 = 0 is S_1 = 0
\Rightarrow x_1x + y_1y + g(x_1+x) + f(y_1+y) + c = 0
\Rightarrow 1(x) + 2(y) – 5(1+x) – 5(2+y) + 25 = 0
\Rightarrow x + 2y – 5 – 5x – 10 – 5y + 25 = 0
\Rightarrow -4x – 7y + 30 = 0
4x + 7y – 30 = 0