Binomial Theorem (VSAQs)
Maths-2A | 6. Binomial Theorem – VSAQs:
Welcome to VSAQs in Chapter 6: Binomial Theorem. This page contains the most important VSAQs in this chapter. Aim to secure top marks in your exams by understanding these clear and straightforward Very Short Answer Questions.
VSAQ-1 : Find the 7th term in (4/x3 + x2/2 )14
In $$(x+y)^n$$ $$T_{r+1} = ^nC_r x^{n-r}y^r$$
$$T_7 = T_6+1 = ^{14}C_6\left(\frac{4}{x^3}\right)^{14-6}\left(\frac{x^2}{2}\right)^6 = ^{14}C_6 \frac{48}{2^6}.x^{12}/x^{24} = ^{14}C_6 \frac{48}{64}.x^{12}/x^{24} = ^{14}C_6 \frac{3}{4}x^{-12}$$
VSAQ-2 : Find the 4th term from the end in the expansion of (2a+5b)8
The 4th term from the end in $$(2a+5b)^8 =$$ 4th term from the beginning in $$(5b+2a)^8$$
Formula: $$T_{r+1} = ^nC_r x^{n-r}y^r$$
$$T_4 = T_3+1 = ^8C_3 (5b)^{8-3} (2a)^3 = ^8C_3 (5b)^5 (2a)^3 = ^8C_3.5^5b^5.2^3a^3 = ^8C_3.2^3.5^5.a^3b^5$$
VSAQ-3 : Find the middle term (s) in the expansion of (3x/7-2y)10
The binomial exponent $$n = 10$$ is even.
The middle term is $$T_{\frac{10}{2}+1} = T_{5+1} = T_6$$
$$T_6 = T_{5+1} = ^{10}C_5\left(\frac{3x}{7}\right)^{10-5}\left(-2y\right)^5 = – ^{10}C_5\left(\frac{3}{7}\right)^5.x^5.2^5.y^5 = – ^{10}C_5 \left(\frac{3}{7}\right)^5.x^5.y^5$$
VSAQ-4 : Find the middle term (s) in the expansion (4x2+5x3)17
The binomial exponent $$n = 17$$ is odd.
The 2 middle terms are $$T_{\frac{17+1}{2}} = T_{\frac{18}{2}} = T_9$$ and the next term $$T_{10}$$
In $$(4x^2 + 5x^3)^{17}$$
$$T_9 = T_{8+1} = ^{17}C_8 (4x^2)^{17-8}\cdot(5x^3)^8 = ^{17}C_8 (4x^2)^9\cdot(5x^3)^8$$
$$= ^{17}C_8 4^9\cdot(x^2)^9\cdot5^8\cdot(x^3)^8 = ^{17}C_8\cdot4^9\cdot5^8\cdot x^{42}$$
Also $$T_{10} = T_{9+1} = ^{17}C_9(4x^2)^{17-9}\cdot(5x^3)^9 = ^{17}C_9 (4x^2)^8\cdot(5x^3)^9$$
$$= ^{17}C_9 4^8\cdot(x^2)^8\cdot5^9\cdot(x^3)^9 = ^{17}C_9\cdot4^8\cdot5^9\cdot x^{43}$$
VSAQ-5 : Find the term independent of x in the expansion of (√x/3+3/2x2)10
The general term of $$\left(\frac{\sqrt{x}}{3} + \frac{3}{2\sqrt{x}^2}\right)^{10}$$ is $$T_{r+1} = ^{10}C_r \left(\frac{\sqrt{x}}{3}\right)^{10-r}\left(\frac{3}{2\sqrt{x}^2}\right)^r$$
$$^{10}C_r\left(\frac{1}{3}\right)^{10-r}\left(\frac{3}{2}\right)^r(x^{\frac{10-r}{2}})(\frac{1}{x^2})^r = ^{10}C_r\left(\frac{1}{3}\right)^{10-r}\left(\frac{3}{2}\right)^r.x^{\frac{10-r}{2}-2r} = ^{10}C_r\left(\frac{1}{3}\right)^{10-r}\left(\frac{3}{2}\right)^r.x^{5-\frac{5r}{2}}$$
Take $$10-\frac{r}{2} – 2r = 0$$ $$10-\frac{r}{2} = 2r$$
$$10-r = 4r$$
$$5r = 10$$
$$r = 2$$
From (1) independent term $$^{10}C_2 \left(\frac{1}{3}\right)^{10-2}\left(\frac{3}{2}\right)^2 = \frac{10 \times 9}{2 \times 1}\left(\frac{1}{3}\right)^4\left(\frac{3^2}{2^2}\right) = \frac{45}{4}$$
VSAQ-6 : Find the coeff. of x11 in (2x2+3/x3)13
The general term of $$(2x^2 + \frac{3}{x^3})^{13}$$ is $$T_{r+1} = ^{13}C_r(2x^2)^{13-r}\left(\frac{3}{x^3}\right)^r$$
$$^{13}C_r(2)^{13-r}\cdot3^r\cdot x^{26-2r}\cdot x^{-3r} = ^{13}C_r (2)^{13-r}(3)^r\cdot x^{26-5r}$$
To get the coefficient of $$x^{11}$$ we take $$26 – 5r = 11 \Rightarrow 5r = 15 \Rightarrow r = 3$$
From (1) the coefficient of $$x^{11} = ^{13}C_3 (2)^{10}(3)^3 = (286)(2^{10})(3^3)$$
VSAQ-7 : Find the largest binomial coefficients in the expansions of
i. (1+x)24
ii. (1+x)19
(i) n = 24 is even. So largest binomial coefficient = Coefficient of middle term
$$n C \frac{n}{2} = ^{24}C_{\frac{24}{2}} = ^{24}C_{12}$$
(ii) n = 19 is odd. So the largest binomial coefficients = Coefficients of the two middle most terms
$$n C \left(\frac{n-1}{2}\right) = ^{19}C_{\frac{19-1}{2}} = ^{19}C_{9}$$ and $$n C \left(\frac{n+1}{2}\right) = ^{19}C_{\frac{19+1}{2}} = ^{19}C_{10}$$
VSAQ-8 : If 22Cr is the largest binomial coefficient in the expansion of (1+x)22. Find the value of 13Cr
The Binomial exponent n = 22 is even
The largest binomial coefficient is $$n C \frac{n}{2} = ^{22}C_{\frac{22}{2}} = ^{22}C_{11}$$
Now $$^{22}C_r = ^{22}C_{11} \Rightarrow r = 11$$
$$^{13}C_r = ^{13}C_{11} = ^{13}C_{2} = \frac{13 \times 12}{2 \times 1} = 78$$
VSAQ-9 : If the coefficients of (2r+4)th term and (3r+4)th term in the expansion of (1+x)21 are equal, then find r
Coefficient of the rth term in $$(1+x)^n$$ is $$nC_{r-1}$$
For the equation $$(1+x)^{21}$$ you’re equating the coefficients of the $$(2r+4)^{th}$$ term and the $$(3r+4)^{th}$$ term
$$21C_{2r+3} = 21C_{3r+3}$$
Formula $$nC_r = nC_s \Rightarrow r = s$$ (or) $$r + s = n$$
$$2r + 3 = 3r + 3$$
$$(2r+3)+(3r+3) = 21 \Rightarrow 5r + 6 = 21 \Rightarrow 5r = 15 \Rightarrow r = 3$$
VSAQ-10 : Prove that C0+2.C1+4.C2+8.C3+…..+2n.Cn=3n
We have $$(1+x)^n = C_0 + C_1x + C_2x^2 + \ldots + C_nx^n$$
Put x = 2 we get $$C_0 + C_1 \cdot 2 + C_2 \cdot 2^2 + \ldots + C_n \cdot 2^n = (1+2)^n = 3^n$$
VSAQ-11 : Find the number of terms in the expansion of (2x+3y+z)7
The number of terms in the trinomial expansion of $$(x + y + z)^n = \frac{(n + 1)(n + 2)}{2}$$
The number of terms in the expansion of $$(2x + 3y + z)^7 = \frac{(7 + 1)(7 + 2)}{2} = 8 \times 9 / 2 = 36$$
VSAQ-12 : Find the set E of x for which the binomial expansion (3-4x)3/4 is valid
$$(3 – 4x)^{3/4} = 3^{3/4}(1 – 4x/3)^{3/4}$$ This is valid when $$|4x/3|<1$$
$$|x| < 3/4$$
$$x \in (-3/4, 3/4)$$
VSAQ-13 : Find the set of ‘x’ for which the binomial expansion of (2+3x)-2/3 is valid
$$(2 + 3x)^{-2/3} = 2^{-2/3}(1 + 3x/2)^{-2/3}$$
This is valid when $$|3x/2| < 1$$
$$|x| < 2/3$$
$$x \in (-2/3, 2/3)$$