29 Most VSAQ’s of Integration Chapter in Inter 2nd Year Maths-2B (TS/AP)
Table of Contents
2 Marks
VSAQ-1 : Evaluate ∫ex(sinx+cosx)dx
Formula:
∫ex(f(x)+f′(x))dx=exf(x)+c
Here
f(x)=sinx
⇒f′(x)=cosx
∫ex(sinx+cosx)dx=exsinx+c
VSAQ-2 : Evaluate ∫ex(secx+secxtanx)dx
Formula:
∫ex(f(x)+f′(x))dx=exf(x)+c
Here
f(x)=secx
⇒f′(x)=secxtanx
∫ex(secx+secxtanx)dx=exsecx+c
VSAQ-3 : Evaluate ∫ex(tanx+log secx)dx
Here
f(x)=logsecx
⇒f′(x)=tanx
∫ex(logsecx+tanx)dx=exlogsecx+c
VSAQ-4 : Evaluate ∫ex (1 + tan2 x + tanx)dx
I=∫ex[(1+tan2x)+tanx]dx
=∫ex(sec2x+tanx)dx
Here
f(x)=tanx
⇒f′(x)=sec2x
∫ex(tanx+sec2x)dx=extanx+c
VSAQ-5 : Evaluate ∫ex (1+xlogx/x)dx
Here
f(x)=logx
⇒f′(x)=1x
∫ex(1+xlogxx)dx
=∫ex(1x+logx)dx=exlogx+c
VSAQ-6 : Evaluate ∫xex/(x+1)2 dx\
I=∫exxex(x+1)2dx=∫[x+1–1(x+1)2]exdx
=∫ex[1x+1–1(x+1)2]dx
=ex(1x+1)+c=exx+1+c
VSAQ-7 : Evaluate ∫(1/1-x2+1/1+x2)dx
∫(1/1 – x2 + 1/1 + x2)ndx = ∫dx/1 – x2 + ∫dx/1 + x2
= Tanh-1x + Tan-1x + x
VSAQ-8 : Evaluate ∫dx/(x+1)(x+2)
∫dx/(x + 1)(x + 2) = ∫(x + 2) – (x + 1)/(x + 1)(x + 2)
= ∫(1/x + 1 – 1/x + 2)dx = log|x + 1| – log|x + 2| + c
VSAQ-9 : Evaluate ∫sec2 x.csc2 xdx
∫sec2 x.csc2 xdx = ∫1/cos2 x sin2 x dx
= ∫sin2x + cos2x/cos2x sin2x dx
= ∫(1/cos2x + 1/sin2x)dx
= ∫(sec2xdx + ∫csc2 xdx
= ∫sec2 xdx + ∫csc2 xdx
= tan x – cot x + c
VSAQ-10 : Evaluate ∫1/(coshx+sinhx) dx
∫1/coshx + sinhx dx
= ∫cosh2x – sinh2x/coshx + sinhx dx
= ∫(cos hx – sin hx)(cos hx + sin hx)/coshx + sinhx
= ∫(cos hx – sin hx)dx = sin hx – cos hx + c