29 Most VSAQ’s of Integration Chapter in Inter 2nd Year Maths-2B (TS/AP)

Table of Contents

2 Marks

VSAQ-1 : Evaluate ∫ex(sinx+cosx)dx

Formula:

∫ex(f(x)+f′(x))dx=exf(x)+c

Here

f(x)=sinx

⇒f′(x)=cosx

∫ex(sinx+cosx)dx=exsinx+c


VSAQ-2 : Evaluate ∫ex(secx+secxtanx)dx

Formula:

∫ex(f(x)+f′(x))dx=exf(x)+c

Here

f(x)=secx

⇒f′(x)=secxtanx

∫ex(secx+secxtanx)dx=exsecx+c


VSAQ-3 : Evaluate ∫ex(tanx+log⁡ secx)dx

Here

f(x)=logsecx

⇒f′(x)=tanx

∫ex(logsecx+tanx)dx=exlogsecx+c


VSAQ-4 : Evaluate ∫e(1 + tanx + tanx)dx

I=∫ex[(1+tan2x)+tanx]dx

=∫ex(sec2x+tanx)dx

Here

f(x)=tanx

⇒f′(x)=sec2x

∫ex(tanx+sec2x)dx=extanx+c


VSAQ-5 : Evaluate ∫e(1+xlogx/x)dx

Here

f(x)=logx

⇒f′(x)=1x

∫ex(1+xlogxx)dx

=∫ex(1x+logx)dx=exlogx+c


VSAQ-6 : Evaluate ∫xex/(x+1)2  dx\

I=∫exxex(x+1)2dx=∫[x+1–1(x+1)2]exdx

=∫ex[1x+1–1(x+1)2]dx

=ex(1x+1)+c=exx+1+c


VSAQ-7 : Evaluate ∫(1/1-x2+1/1+x2)dx

∫(1/1 – x2 + 1/1 + x2)ndx = ∫dx/1 – x2 + ∫dx/1 + x2

= Tanh-1x + Tan-1x + x


VSAQ-8 : Evaluate ∫dx/(x+1)(x+2)

∫dx/(x + 1)(x + 2) = ∫(x + 2) – (x + 1)/(x + 1)(x + 2)

= ∫(1/x + 1 – 1/x + 2)dx = log|x + 1| – log|x + 2| + c


VSAQ-9 : Evaluate ∫secx.cscxdx

∫secx.cscxdx = ∫1/cos2 x sin2 x dx

= ∫sin2x + cos2x/cos2x sin2x dx

= ∫(1/cos2x + 1/sin2x)dx

= ∫(sec2xdx + ∫csc2 xdx

= ∫sec2 xdx + ∫csc2 xdx

= tan x – cot x + c


VSAQ-10 : Evaluate ∫1/(coshx+sinhx) dx

∫1/coshx + sinhx dx

= ∫cosh2x – sinh2x/coshx + sinhx dx

= ∫(cos hx – sin hx)(cos hx + sin hx)/coshx + sinhx

= ∫(cos hx – sin hx)dx = sin hx – cos hx + c